Abstract

We investigate theoretically and experimentally the computational properties of an optoelectronic neuromorphic processor based on a complex nonlinear dynamics. This neuromorphic approach is based on a new paradigm of or reservoir computing, which is intrinsically different from the concept of Turing machines. It essentially consists in expanding the input information to be processed into a higher dimensional phase space, through the nonlinear transient response of a complex dynamics excited by the input information. The computed output is then extracted via a linear separation of the transient trajectory in the complex phase space, performed through a learning phase consisting of the resolution of a regression problem. We here investigate an architecture for photonic neuromorphic computing via these complex nonlinear dynamical transients. A versatile photonic nonlinear transient computer based on a multiple-delay is reported. Its hybrid analogue and digital architecture allows for an easy reconfiguration, and for direct implementation of in-line processing. Its computational efficiency in parameter space is also analyzed, and the computational performance of this system is successfully evaluated on a standard spoken digit recognition task. We then discuss the pathways that can lead to its effective integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.