Abstract
Lifetime maximization is one key element in the design of sensor-network-based surveillance applications. We propose a protocol for node sleep scheduling that guarantees a bounded-delay sensing coverage while maximizing network lifetime. Our sleep scheduling ensures that coverage rotates such that each point in the environment is sensed within some finite interval of time, called the detection delay. The framework is optimized for rare event detection and allows favorable compromises to be achieved between event detection delay and lifetime without sacrificing (eventual) coverage for each point. We compare different sleep scheduling policies in terms of average detection delay, and show that ours is closest to the detection delay lower bound for stationary event surveillance. We also explain the inherent relationship between detection delay, which applies to persistent events, and detection probability, which applies to temporary events. Finally, a connectivity maintenance protocol is proposed to minimize the delay of multi-hop delivery to a base-station. The resulting sleep schedule achieves the lowest overall target surveillance delay given constraints on energy consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.