Abstract

The standard procedure for relativistic many-body perturbation theory (RMBPT) is not relativistically covariant, and the effects of retardation, virtual-electron-positron-pair, and radiative effects (self-energy, vacuum polarisation, and vertex correction) — the so-called QED effects — are left out. The energy contribution from the QED effects can be evaluated by the covariant evolution operator method, which has a structure that is similar to that of RMBPT, and it can serve as a merger between QED and RMBPT. The new procedure makes it, in principle, possible for the first time to evaluate QED effects together with correlation to high order. The procedure is now being implemented, and it has been shown that the effect of electron correlation on first-order QED for He-like neon dominates heavily over second-order QED effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.