Abstract

The tetranuclear complexes [{(PiPr(3))(2)(CO)ClRu(mu-CH=CHpy)Ru Cl(CO)(PPh(3))(2)}(2)(mu-CH=CH-C(6)H(4)- CH=CH-1,4)] (3 a) and [{(PiPr(3))(2)(CO)ClRu(mu-CH=CHpy)RuCl(CO)(PPh(3))(2)}(2)(mu-CH=CH-C(6)H(4)-CH=CH-1,3)] (3b), which contain vinylpyridine ligands that connect peripheral Ru(PiPr(3))(2)(CO)Cl units to a central divinylphenylene-bridged diruthenium core, have been prepared and investigated. These complexes, in various oxidation states up to the tetracation level, have been characterized by standard electrochemical and spectroelectrochemical techniques, including IR, UV/Vis/NIR and ESR spectroscopy. A comparison with the results for the vinylpyridine-bridged dinuclear complex [PiPr(3))(2)(CO)ClRu(mu-CH=CHpy)RuCl(CO)(PPh(3))(2)(CH=CHPh)] (6) and the divinylphenylene-bridged complexes [{(EtOOCpy)(CO)Cl(PPh(3))(2)Ru}(2)(mu-CH=CH-C(6)H(4)-CH=CH-1,4)] (8a) and [{(EtOOCpy)(CO)Cl(PPh(3))(2)Ru}(2)(mu-CH=CH-C(6)H(4)-CH=CH-1,3)] (8b), which represent the outer sections (6) or the inner core (8a,b) of complexes 3a,b, and with the mononuclear complex [(EtOOCpy)(CO)(PPh(3))(2)RuCl(CH=CHPh)] (7) indicate that every accessible oxidation process is primarily centred on one of the vinyl ligands, with smaller contributions from the metal centres. The experimental results and quantum chemical calculations indicate charge- and spin-delocalization across the central divinylphenylenediruthenium part of 3a,b or the styrylruthenium unit of 6, but not beyond. The energy gap between the higher lying styryl- or divinylphenylenediruthenium-based and the lower occupied vinylpyridineruthenium-based orbitals increases in the order 6<3 b<3 a and thus follows the conjugation within the non-heteroatom-substituted aromatic vinyl ligand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.