Abstract
We investigate the theory of principal bundles from a homotopical point of view. In the first part of the thesis, we prove a classification of principal bundles over a fixed base space, dual to the well-known classification of bundles with a fixed structure group. This leads to an adjointness property in a homotopical context between the classifying space and the loop space. We then focus on characteristic classes, which are invariants for principal bundles that take values in the cohomology of the base space. Each characteristic class captures different geo- metric features of principal bundles. We propose a uniform treatment to interpret most of known characteristic classes as obstructions to group reduction and to the extension of a universal cocycle. By plugging in the correct parameters, the method recovers several classical theorems. Afterwards, we construct a long exact sequence of abelian groups for any principal bundle. This sequence involves the cohomology of the base space and the group cohomology of the structure group. Moreover the connecting map is deeply related with the characteristic classes of the bundle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.