Abstract
In recent years performance of High Performance Computing Clusters took precedence over their power consumption. However, costs of energy and demand for ecologically acceptable IT solutions are higher than ever before, therefore a need for HPC clusters with acceptable power consumption becomes increasingly important. Consequently, the Green500 list, which takes into account both performance and power consumption of HPC clusters, almost reached the popularity of the Top500 list. Interestingly, the Green500 list is not an opponent to Top500 list; its core idea is to complement the Top500. Therefore, the Top500 list still serves as the basis for the Green500 list, and its numbers regarding measured HPL performance, are a basis for calculating the Green500 list. Indeed, the Green500 is the Top500 list ordered by HPL measured performance per Watt. Rmax numbers gained from High Performance Linpack benchmarks serve as performance input parameters, and total power consumed during execution of HPL on a certain HPC clusters is a power consumption parameter. The critical question remains: how to measure the consumed power correctly? This paper proposes that if it is not possible to measure the consumed power, one can still use maximum power consumption numbers rated from hardware vendors to find at least the lower bound green efficiency of HPC clusters. The main idea behind this approach is that Rmax values found on Top500 list never achieve Rpeak theoretical values, and that even most efficient HPL benchmark can never utilize computing nodes at their maximum. Furthermore by comparing MFLOPS/W results we gained with those found on Green500 list, we noted the excellent efficiency of the new HPC Isabella cluster recently powered on at University Computing Centre in Zagreb, ranking in just behind University of North Carolina KillDevil Top500 super cluster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.