Abstract
An instrument that combines near-field laser ablation at atmospheric pressure with an ion trap/time-of-flight mass spectrometer was developed. By coupling a UV laser into a fiber tip of a scanning near-field optical microscope, ablation craters much smaller than achievable with conventional laser optics can in principle be obtained. Laser ablation was performed on samples such as DHB, anthracene, and pyrene. Desorbed neutral analytes are transferred from atmospheric pressure to an ion trap, ionized, and stored. After 10 ms, the ions are extracted into a sensitive time-of-flight spectrometer. We demonstrate the feasibility of this unique SNOM-MS instrument for chemical analysis with unprecedented lateral resolution at atmospheric pressure. Spatially resolved molecular analysis with a lateral resolution of 5 microm (fwhm) and a sensitivity of approximately 60 fmol of solid anthracene is demonstrated, along with topographical analysis with the same instrument. No other technique available today offers this lateral resolution in combination with soft mass spectrometry and the capability of sampling fragile specimens at atmospheric pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.