Abstract

Ultrasound waves, widely used as a non-invasive diagnostic modality, were recently shown to stimulate neuronal activity. Functionally meaningful stimulation, as is required in order to form a unified percept, requires the dynamic generation of simultaneous stimulation patterns. In this paper, we examine the general feasibility and properties of an acoustic retinal prosthesis, a new vision restoration strategy that will combine ultrasonic neuro-stimulation and ultrasonic field sculpting technology towards non-invasive artificial stimulation of surviving neurons in a degenerating retina. We explain the conceptual framework for such a device, study its feasibility in an in vivo ultrasonic retinal stimulation study and discuss the associated design considerations and tradeoffs. Finally, we simulate and experimentally validate a new holographic method—the angular spectrum-GSW—for efficient generation of uniform and accurate continuous ultrasound patterns. This method provides a powerful, flexible solution to the problem of projecting complex acoustic images onto structures like the retina.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.