Abstract

In unstructured environments, robots need to deal with a wide variety of objects with diverse shapes, and often, the instances of these objects are unknown. Traditional methods rely on training with large-scale labeled data, but in environments with continuous and high-dimensional state spaces, the data become sparse, leading to weak generalization ability of the trained models when transferred to real-world applications. To address this challenge, we present an innovative maximum entropy Deep Q-Network (ME-DQN), which leverages an attention mechanism. The framework solves complex and sparse reward tasks through probabilistic reasoning while eliminating the trouble of adjusting hyper-parameters. This approach aims to merge the robust feature extraction capabilities of Fully Convolutional Networks (FCNs) with the efficient feature selection of the attention mechanism across diverse task scenarios. By integrating an advantage function with the reasoning and decision-making of deep reinforcement learning, ME-DQN propels the frontier of robotic grasping and expands the boundaries of intelligent perception and grasping decision-making in unstructured environments. Our simulations demonstrate a remarkable grasping success rate of 91.6%, while maintaining excellent generalization performance in the real world.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.