Abstract

Recently, Magnetic Resonance imaging-only (MR-only) radiotherapy treatment planning (RTP) receives growing interests since it is radiation-free and time/cost efficient. A key step in MR-only RTP is the generation of a synthetic CT from MR for dose calculation. Although deep learning approaches have achieved promising results on this topic, they still face two major challenges. First, it is very difficult to get perfectly registered CT-MR pairs to learn the intensity mapping, especially for abdomen and pelvic scans. Slight registration errors may mislead the deep network to converge at a sub-optimal CT-MR intensity matching. Second, training of a standard 3D deep network is very memory-consuming. In practice, one has to either shrink the size of the training network (sacrificing the accuracy) or use a patch-based sliding-window scheme (sacrificing the speed). In this paper, we proposed a novel method to address these two challenges. First, we designed a max-pooled cost function to accommodate imperfect registered CT-MR training pairs. Second, we proposed a network that consists of multiple 2D sub-networks (from different 3D views) followed by a combination sub-network. It reduces the memory consumption without losing the 3D context for high quality CT synthesis. We demonstrated our method can generate high quality synthetic CTs with much higher runtime efficiency compared to the state-of-the-art as well as our own benchmark methods. The proposed solution can potentially enable more effective and efficient MR-only RTPs in clinical settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call