Abstract

In this paper, we present an analysis of unsupervised domain adaptation with a series of theoretical and algorithmic results. We derive a novel Rényi- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\alpha$</tex-math></inline-formula> divergence-based generalization bound, which is tailored to domain adaptation algorithms with arbitrary loss functions in a stochastic setting. Moreover, our theoretical results provide new insights into the assumptions for successful domain adaptation: the closeness between the conditional distributions of the domains and the Lipschitzness on the source domain. With these assumptions, we reveal the following: if their conditional generation distributions are close, the Lipschitzness property of the target domain can be transferred from the Lipschitzness on the source domain, without knowing the exact target distribution. Motivated by our analysis and assumptions, we further derive practical principles for deep domain adaptation: 1) Rényi-2 adversarial training for marginal distributions matching and 2) Lipschitz regularization for the classifier. Our experimental results on both synthetic and real-world datasets support our theoretical findings and the practical efficiency of the proposed principles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.