Abstract

Natural language explanation in visual question answer (VQA-NLE) aims to explain the decision-making process of models by generating natural language sentences to increase users' trust in the black-box systems. Existing post-hoc methods have achieved significant progress in obtaining a plausible explanation. However, such post-hoc explanations are not always aligned with human logical inference, suffering from the issues on: 1) Deductive unsatisfiability, the generated explanations do not logically lead to the answer; 2) Factual inconsistency, the model falsifies its counterfactual explanation for answers without considering the facts in images; and 3) Semantic perturbation insensitivity, the model can not recognize the semantic changes caused by small perturbations. These problems reduce the faithfulness of explanations generated by models. To address the above issues, we propose a novel self-supervised Multi-level Contrastive Learning based natural language Explanation model (MCLE) for VQA with semantic-level, image-level, and instance-level factual and counterfactual samples. MCLE extracts discriminative features and aligns the feature spaces from explanations with visual question and answer to generate more consistent explanations. We conduct extensive experiments, ablation analysis, and case study to demonstrate the effectiveness of our method on two VQA-NLE benchmarks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.