Abstract

The implementation of distributed propulsion and boundary layer ingestion for unmanned aerial vehicles represents various challenges for the design of embedded ducts in blended wing body configurations. This work explores the conceptual design and evaluation of DP configurations with BLI. The aerodynamic integration of each configuration is evaluated following a proposed framework, including simulation analysis. Power saving coefficient and propulsive efficiency were compared against a baseline podded case. The results show the optimal propulsion configuration for the BWB UAV obtaining 3.95% of power benefit and propulsive efficiency (ηp>80%). Indeed, the aerodynamic integration effects for the proposed design maintain the BWB’s aerodynamic efficiency, which will contribute to longer endurance and better performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call