Abstract

Extracellular histone proteins in the blood indicate a heightened risk of morbidity after trauma or in major illnesses such as sepsis. We present the development of an aptasensor for histone detection with an extended gate field-effect transistor (EGFET) configuration, which benefits from low power consumption, rapid response, and compatibility with miniaturized gold electrodes. Histones have a high isoelectric point and charge density, which cause them to physically adsorb to non-specific elements of the sensor that have available electrostatic charges. To combat this, the sensing surface is formed with a thiol-modified, high-affinity and histone-specific RNA aptamer sequence and by co-immobilizing with poly(ethylene glycol) methyl ether thiol (PEG) as a blocking agent. Surface plasmon resonance (SPR) is used to analyze aptamer and PEG immobilization strategies, confirm histone binding, and calculate kinetic binding constants. Through comparison of different blocking agents and time-dependent preparation, the ideal equilibrium dissociation constant (KD) is estimated to be below 200 pM, which is the upper range of extracellular histone concentrations in critically ill patients with high mortality. The EGFET sensitivity of the optimized aptasensor is 6.65 mV/decade concentration change for histone H4 with a physiologically relevant 5 pM limit of detection. Selectivity tests with 100 nM bovine serum albumin (BSA) demonstrate a signal response that is 13-fold smaller than for histones. This EGFET aptasensor platform is suitable for future point-of-care monitoring of histone levels in critically ill patients, thus permitting the early detection of increased risk and the need for more aggressive interventional measures to prevent mortality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.