Abstract
The ability to manipulate electron spin in organic molecular materials offers a new and extremely tantalizing route towards spin electronics, both from fundamental and technological points of view. This is mainly due to the unquestionable advantage of weak spin-orbit and hyperfine interactions in organic molecules, which leads to the possibility of preserving spin-coherence over times and distances much longer than in conventional metals or semiconductors. Here we demonstrate theoretically that organic spin valves, obtained by sandwiching an organic molecule between magnetic contacts, can show a large bias-dependent magnetoresistance and that this can be engineered by an appropriate choice of molecules and anchoring groups. Our results, obtained through a combination of state-of-the-art non-equilibrium transport methods and density functional theory, show that although the magnitude of the effect varies with the details of the molecule, large magnetoresistance can be found both in the tunnelling and the metallic limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.