Abstract

Abstract The so-called Laryngeal Adductor Reflex (LAR) protects the respiratory tract from particle intrusion by quickly approximating the vocal folds to close the free glottal space. An impaired LAR may be associated with an increased risk of aspiration and other adverse conditions. To evaluate the integrity of the LAR, we recently developed an endoscopic prototype for LAR triggering by shooting accelerated droplets onto a predefined laryngeal target region. We now modified the existing droplet-dispensing system to adapt the fluid system pressure as well as the valve opening time to user-chosen values autonomously. This has been accomplished using a microcontroller board connected to a pressure sensor and a mechatronic syringe pump. For performance validation, we designed a measurement setup capable of tracking the droplet along a vertical trajectory. In addition to the experimental setup, the influence of parameters such as system pressure and valve opening time on the micro-droplet formation is presented. Further development will enable the physician to adjust the droplet momentum by setting a single input value on the microcontroller-based setup, thus further increasing usability of the diagnostic device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.