Abstract
MapReduce, which is the de facto programming model for large-scale distributed data processing, and its most popular implementation Hadoop have enjoyed widespread adoption in industry during the past few years. Unfortunately, from a performance point of view getting the most out of Hadoop is still a big challenge due to the large number of configuration parameters. Currently these parameters are tuned manually by trial and error, which is ineffective due to the large parameter space and the complex interactions among the parameters. Even worse, the parameters have to be re-tuned for different MapReduce applications and clusters. To make the parameter tuning process more effective, in this paper we explore machine learning-based performance models that we use to auto-tune the configuration parameters. To this end, we first evaluate several machine learning models with diverse MapReduce applications and cluster configurations, and we show that support vector regression model (SVR) has good accuracy and is also computationally efficient. We further assess our auto-tuning approach, which uses the SVR performance model, against the Starfish auto tuner, which uses a cost-based performance model. Our findings reveal that our auto-tuning approach can provide comparable or in some cases better performance improvements than Starfish with a smaller number of parameters. Finally, we propose and discuss a complete and practical end-to-end auto-tuning flow that combines our machine learning-based performance models with smart search algorithms for the effective training of the models and the effective exploration of the parameter space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.