Abstract

In recent years, multi-photon 3D laser printing has become a widely used tool for the fabrication of micro- and nanostructures for a large variety of applications. Typically, thorough sample characterisation is key for an efficient optimisation of the printing process. To date, three-dimensional microscopic inspection has usually been carried out on finished 3D printed microstructures, that is, using ex-situ approaches. In contrast, in-situ 3D characterization tools are desirable for quickly assessing the quality and properties of 3D printed microstructures. Along these lines, we present and characterise a Fourier-domain optical coherence tomography (FD-OCT) system that can be readily integrated into an existing 3D laser lithography setup. We demonstrate its capabilities by examining different 3D printed polymer microstructures immersed in a liquid photoresist. In such samples, local reflectivity arises from the (refractive-index) contrasts between the polymerised and non-polymerised regions. Thus, the refractive index of the printed material can be extracted. Furthermore, we demonstrate that the reflectivity of polymer-monomer transitions exhibits time-dependent behaviour after printing. Supported by transfer-matrix calculations, we explain this effect in terms of the time-dependent graded-index transition originating from monomer diffusion into the polymer matrix. Finally, we show exemplary 3D reconstructions of printed structures that can be readily compared with 3D computer designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.