Abstract
Abstract The high polymer and low wood content of current transparent wood has limitation in the mechanical strength and hence obstruct green sustainable transition of the building industry. In this study, a novel method for manufacturing transparent wood was reported by minimizing the usage of polyethylene glycol using partial impregnation followed by a densification approach. The delignified wood was firstly partially impregnated by polyethylene glycol, and subsequently compressed to eliminate pores for the compressed transparent wood, providing the strong hydrogen bonds and dense structures for transparent wood. The wood content of the novel compressed transparent wood was dramatically increased to 64%, compared with the uncompressed transparent wood of 25%. Additionally, the obtained compressed transparent wood demonstrated satisfactory optical transmittance, suitable thermal energy storage, and superior mechanical strengths owing to the formation of densely packed microstructures. This novel, sustainable, and low-cost transparent wood was easy to be manufactured while having increased mechanical and energy-saving characteristics compared to those available in the existing market.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.