Abstract
AbstractDespite being an indirect bandgap material, germanium (Ge) recently appeared as a material of choice for low power consumption optical link on silicon. Thanks to a low energy difference between direct and indirect energy bandgap, optical transitions around the direct gap can be used to achieve strong electroabsorption or photodetection in a material already used in microelectronics circuits. However, many challenges have to be addressed such as the growth of germanium-rich structures on silicon or the modeling of these structures around both direct and indirect bandgaps. This paper will explore recent achievements in Ge/SiGe quantum wells structures. Quantum confined Stark effect has been studied for different quantum well designs and light polarization. Both absorption and phase variations have been characterized and will be reported. Carrier recombination processes is also an intense research topic, in order to evaluate the competition between direct and indirect band gap emission as a function of temperature. Main results and conclusion will be introduced. Finally, high performance photonic devices (modulator and photodetector) that have already been demonstrated will be presented. At the end the challenges faced by Ge/SiGe QW as a new photonic platform will be presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.