Abstract
Production flow is becoming increasingly complex since manufacturers must react quickly to changing markets demands and diverse customer requirements. In order to ensure production efficiency, it is essential to have an adequate scheduling system capable of managing diverse process flows and handling unforseen changes. In this paper, we present an approach leveraging Digital Twins (DTs) and Deep-Q-Learning to perform integrated process planning and scheduling for service-based production. DTs of production assets provide live information about their physical entities for our approach to perform live decision-making based on the current operation conditions. We use Deep-Q-Learning which is a deep Reinforcement Learning (RL) algorithm to perform integrated process planning and scheduling. We present two RL-designs that deal with different situations of live decision-making. We have evaluated the learning efficiency and scalability of the RL-designs on a virtual aluminum cold rolling mill developed by the SMS Group,11https://www.sms-group.com/plants/cold-rolling-mills-for-aluminum. in the context of the BaSys 4.2 project.22https://www.eclipse.org/research/projects/basys_42/. The results show that the first RL-design is suitable for deriving schedules for individualized production with small lots where process plans must be re-calculated frequently, while the second RL-design is optimal for production with large job quantities where jobs arrive continuously.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.