Abstract
In video compression the luma channel can be useful for predicting chroma channels (Cb, Cr), as has been demonstrated with the Cross-Component Linear Model (CCLM) used in Versatile Video Coding (VVC) standard. More recently, it has been shown that neural networks can even better capture the relationship among different channels. In this paper, a new attention-based neural network is proposed for cross-component intra prediction. With the goal to simplify neural network design, the new framework consists of four branches: boundary branch and luma branch for extracting features from reference samples, attention branch for fusing the first two branches, and prediction branch for computing the predicted chroma samples. The proposed scheme is integrated into VVC test model together with one additional binary block-level syntax flag which indicates whether a given block makes use of the proposed method. Experimental results demonstrate 0.31%/2.36%/2.00% BD-rate reductions on Y/Cb/Cr components, respectively, on top of the VVC Test Model (VTM) 7.0 which uses CCLM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.