Abstract

Numerous works have explored deep models for the classification of high-resolution natural images. However, limited investigation has been made into a deep classification for low-resolution synthetic aperture radar (SAR) images, which is a challenging yet important task in the field of remote sensing. Existing work adopted ROC–VGG, which has a huge amount of parameters, thus limiting its application in practical deployment. It remains unclear whether the techniques developed in high-resolution natural images to make the model lightweight can be effective for low-resolution SAR images. Therefore, with prior work as the baseline, this work conducts an empirical study, testing three popular lightweight techniques: (1) channel attention module; (2) spatial attention module; (3) multi-stream head. Our empirical results show that these lightweight techniques in the high-resolution natural image domain can also be effective in the low-resolution SAR domain. We reduce the parameters from 9.2M to 0.17M while improving the performance from 94.8% to 96.8%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.