Abstract

After Scott, mathematical models of the type-free lambda calculus are constructed by order theoretic methods and classified into semantics according to the nature of their representable functions. Selinger [48] asked if there is a lambda theory that is not induced by any non-trivially partially ordered model (order-incompleteness problem). In terms of Alexandroff topology (the strongest topology whose specialization order is the order of the considered model) the problem of order-incompleteness can be also characterized as follows: a lambda theory T is order-incomplete if, and only if, every partially ordered model of T is partitioned by the Alexandroff topology in an infinite number of connected components (= minimal upper and lower sets), each one containing exactly one element of the model. Towards an answer to the order-incompleteness problem, we give a topological proof of the following result: there exists a lambda theory whose partially ordered models are partitioned by the Alexandroff topology in an infinite number of connected components, each one containing at most one λ-term denotation. This result implies the incompleteness of every semantics of lambda calculus given in terms of partially ordered models whose Alexandroff topology has a finite number of connected components (e.g.the Alexandroff topology of the models of the continuous, stable and strongly stable semantics is connected).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.