Abstract

In many real life network-based applications such as social relation analysis, Web analysis, collaborative network, road network and bioinformatics, the discovery of components with high connectivity is an important problem. In particular, k-edge connected component (k-ECC) has recently been extensively studied to discover disjoint components. Yet many real scenarios present more needs and challenges for overlapping components. In this paper, we propose a k-vertex connected component (k-VCC) model, which is much more cohesive, and thus supports overlapping between components very well. To discover k-VCCs, we propose three frameworks including top-down, bottom-up and hybrid frameworks. The top-down framework is first developed to find the exact k-VCCs by dividing the whole network. To further reduce the high computational cost for input networks of large sizes, a bottom-up framework is then proposed to locally identify the seed subgraphs, and obtain the heuristic k-VCCs by expanding and merging these seed subgraphs. Finally, the hybrid framework takes advantages of the above two frameworks. It exploits the results of bottom-up framework to construct the well-designed mixed graph and then discover the exact k-VCCs by contracting the mixed graph in a top-down way. Because the size of mixed graph is smaller than the original network, the hybrid framework runs much faster than the top-down framework. Comprehensive experimental are conducted on large real and synthetic networks and demonstrate the efficiency and effectiveness of the proposed exact and heuristic approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.