Abstract

Conventional antibodies react with antigens reversibly. We report the formation of unusually stable complexes of HIV gp120 and nucleophilic antibodies raised by immunization with an electrophilic HIV gp120 analog (E-gp120). The stability of the complexes was evident from their very slow dissociation in a nondenaturing solvent (approximate t(1/2) 18.5 days) and their resistance to dissociation by a denaturant commonly employed to disrupt noncovalent protein-protein binding (sodium dodecyl sulfate). Kinetic studies indicated time-dependent and virtually complete progression of the antibody-gp120 complexes from the initial noncovalent state to a poorly dissociable state. The antibodies to E-gp120 displayed improved covalent reactivity with an electrophilic phosphonate probe compared to control antibodies, suggesting their enhanced nucleophilicity. One of the stably binding antibodies neutralized the infectivity of CCR5-dependent primary HIV strains belonging to clades B and C. These findings suggest the feasibility of raising antibodies capable of long-lasting inactivation of antigens by electrophilic immunization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.