Abstract
The problem of Software Reliability Prediction is attracting the attention of several researchers during the last few years. Various classification techniques are proposed in current literature which involve the use of metrics drawn from version control systems in order to classify software components as defect-prone or defect-free. In this paper, we create a novel genetic fuzzy rule-based system to efficiently model the defect-proneness of each component. The system uses a Mamdani-Assilian inference engine and models the problem as a one-class classification task. System rules are constructed using a genetic algorithm, where each chromosome represents a rule base (Pittsburgh approach). The parameters of our fuzzy system and the operators of the genetic algorithm are designed with regard to producing interpretable output. Thus, the output offers not only effective classification, but also a comprehensive set of rules that can be easily visualized to extract useful conclusions about the metrics of the software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.