Abstract
With the ever-growing digitalization and mobility of electric transportation, lithium-ion batteries are facing performance and safety issues with the appearance of new materials and the advance of manufacturing techniques. This paper presents a systematic review of burgeoning multi-scale modelling and design for battery efficiency and safety management. The rise of cloud computing provides a tactical solution on how to efficiently achieve the interactional management and control of power batteries based on the battery system and traffic big data. The potential of selecting adaptive strategies in emerging digital management is covered systematically from principles and modelling, to machine learning. Specifically, multi-scale optimization is expounded in terms of materials, structures, manufacturing and grouping. The progress on modelling, state estimation and management methods is summarized and discussed in detail. Moreover, this review demonstrates the innovative progress of machine learning based data analysis in battery research so far, laying the foundation for future cloud and digital battery management to develop reliable onboard applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.