Abstract

Fuzzy classification systems (FCS) are traditionally built from observations (data points) in an off-line one shot-experiment. Once the learning phase is exhausted, the classifier is no more capable to learn further knowledge from new observations nor is it able to update itself in the future. This paper investigates the problem of incremental learning in the context of FCS. It shows how, in contrast to off-line or batch learning, incremental learning infers knowledge in the form of fuzzy rules from data that evolves over time. To accommodate incremental learning, appropriate mechanisms are applied in all steps of the FCS construction: (1) Incremental supervised clustering to generate granules in a progressive manner, (2) Systematic and automatic update of fuzzy partitions, (3) Incremental feature selection using an incremental version of Fisher’s interclass separability criterion. The effect of incrementality on various aspects is demonstrated via a numerical evaluation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.