Abstract

Nanostructures appear to be promising for a number of applications in molecular diagnostics, mainly due to the increased surface-to-volume ratio they can offer, the very low limit of detection achievable, and the possibility to fabricate point-of-care diagnostic devices. In this paper, we review examples of the use of nanostructures as diagnostic tools that bring in marked improvements over prevalent classical assays. The focus is laid on the various sensing paradigms that possess the potential or have demonstrated the capability to replace or augment current analytical strategies. We start with a brief introduction of the various types of nanostructures and their physical properties that determine the transduction principle. This is followed by a concise collection of various functionalization protocols used to immobilize biomolecules on the nanostructure surface. The sensing paradigms are discussed in two contexts: the nanostructure acting as a label for detection, or the nanostructure acting as a support upon which the molecular recognition events take place. In order to be successful in the field of molecular diagnostics, it is important that the nanoanalytical tools be evaluated in the appropriate biological environment. The final section of the review compiles such examples, where the nanostructure-based diagnostic tools have been tested on realistic samples such as serum, demonstrating their analytical power even in the presence of complex matrix effects. The ability of nanodiagnostic tools to detect ultralow concentrations of one or more analytes coupled with portability and the use of low sample volumes is expected to have a broad impact in the field of molecular diagnostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.