Abstract
The efficacy of the routinely used anti-HIV (Human Immunodeficiency Virus) therapy based on nucleoside reverse transcriptase inhibitors (NRTIs) is limited by the poor cellular uptake of the active triphosphorylated metabolites and the low efficiency of intracellular phosphorylation of their prodrugs. Nanoparticles of iron(iii) polycarboxylate Metal-Organic Frameworks (nanoMOFs) are promising drug nanocarriers. In this study, two active triphosphorylated NRTIs, azidothymidine triphosphate (AZT-Tp) and lamivudine triphosphate (3TC-Tp), were successfully co-encapsulated into the biocompatible mesoporous iron(iii) trimesate MIL-100(Fe) nanoMOF in order to improve anti-HIV therapies. The drug loaded nanoMOFs could be stored for up to 2-months and reconstituted after freeze drying, retaining similar physicochemical properties. Their antiretroviral activity was evidenced in vitro on monocyte-derived macrophages experimentally infected with HIV, making these co-encapsulated nanosystems excellent HIV-microbicide candidates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.