Abstract
This study explored xanthan gum hydrogel coatings as an approach to more environmental friendly fouling control strategies. Xanthan gum served as a filler in a conventional rosin/acrylic coating matrix, leading to the formation of a 150 μm thick gel layer on the coating surface upon seawater exposure. While biocide-free xanthan hydrogel coatings did not have significant antifouling capabilities, a synergistic effect between hydrogel and cuprous oxide was observed. During field tests at the CoaST Maritime Test Center (CMTC), it was found that the cuprous oxide concentration could be reduced by at least 50 wt% for the hydrogel coating without compromising the antifouling performance. Two possible causes were identified. First, the hydrogel coating could maintain a higher release rate over a prolonged period and second, the hydrogel was able to accumulate Cu2+, increasing retention time on the surface, creating a hostile environment. A synergistic enhancement in gel strength, yield point, and flow point was observed when xanthan was combined with konjac mannan. While promising for static applications, the rheological assessments of the different gels highlighted challenges for the application in dynamic settings like moving ships.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.