Abstract
BackgroundAdvances in technology have led to the generation of massive amounts of complex and multifarious biological data in areas ranging from genomics to structural biology. The volume and complexity of such data leads to significant challenges in terms of its analysis, especially when one seeks to generate hypotheses or explore the underlying biological processes. At the state-of-the-art, the application of automated algorithms followed by perusal and analysis of the results by an expert continues to be the predominant paradigm for analyzing biological data. This paradigm works well in many problem domains. However, it also is limiting, since domain experts are forced to apply their instincts and expertise such as contextual reasoning, hypothesis formulation, and exploratory analysis after the algorithm has produced its results. In many areas where the organization and interaction of the biological processes is poorly understood and exploratory analysis is crucial, what is needed is to integrate domain expertise during the data analysis process and use it to drive the analysis itself.ResultsIn context of the aforementioned background, the results presented in this paper describe advancements along two methodological directions. First, given the context of biological data, we utilize and extend a design approach called experiential computing from multimedia information system design. This paradigm combines information visualization and human-computer interaction with algorithms for exploratory analysis of large-scale and complex data. In the proposed approach, emphasis is laid on: (1) allowing users to directly visualize, interact, experience, and explore the data through interoperable visualization-based and algorithmic components, (2) supporting unified query and presentation spaces to facilitate experimentation and exploration, (3) providing external contextual information by assimilating relevant supplementary data, and (4) encouraging user-directed information visualization, data exploration, and hypotheses formulation. Second, to illustrate the proposed design paradigm and measure its efficacy, we describe two prototype web applications. The first, called XMAS (Experiential Microarray Analysis System) is designed for analysis of time-series transcriptional data. The second system, called PSPACE (Protein Space Explorer) is designed for holistic analysis of structural and structure-function relationships using interactive low-dimensional maps of the protein structure space. Both these systems promote and facilitate human-computer synergy, where cognitive elements such as domain knowledge, contextual reasoning, and purpose-driven exploration, are integrated with a host of powerful algorithmic operations that support large-scale data analysis, multifaceted data visualization, and multi-source information integration.ConclusionsThe proposed design philosophy, combines visualization, algorithmic components and cognitive expertise into a seamless processing-analysis-exploration framework that facilitates sense-making, exploration, and discovery. Using XMAS, we present case studies that analyze transcriptional data from two highly complex domains: gene expression in the placenta during human pregnancy and reaction of marine organisms to heat stress. With PSPACE, we demonstrate how complex structure-function relationships can be explored. These results demonstrate the novelty, advantages, and distinctions of the proposed paradigm. Furthermore, the results also highlight how domain insights can be combined with algorithms to discover meaningful knowledge and formulate evidence-based hypotheses during the data analysis process. Finally, user studies against comparable systems indicate that both XMAS and PSPACE deliver results with better interpretability while placing lower cognitive loads on the users. XMAS is available at: http://tintin.sfsu.edu:8080/xmas. PSPACE is available at: http://pspace.info/.
Highlights
Advances in technology have led to the generation of massive amounts of complex and multifarious biological data in areas ranging from genomics to structural biology
With PSPACE, we demonstrate how complex structure-function relationships can be explored
The results highlight how domain insights can be combined with algorithms to discover meaningful knowledge and formulate evidence-based hypotheses during the data analysis process
Summary
Advances in technology have led to the generation of massive amounts of complex and multifarious biological data in areas ranging from genomics to structural biology. At the state-of-the-art, the application of automated algorithms followed by perusal and analysis of the results by an expert continues to be the predominant paradigm for analyzing biological data This paradigm works well in many problem domains. To understand and model the underlying biology, scientists have to often seek out patterns in a sea of data For such tasks, traditionally, one of two types of approaches has been used: the first involves statistical and algorithmic methods and the second, visualization-based data analysis. Visualization-based methods take advantage of cognitive strengths in pattern recognition and help in exploratory analysis, hypotheses formulation, and sensemaking In spite of their differences, it may be valuable to take strengths of both approaches for creating novel discovery paradigms and tools [1]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.