Abstract

Lithium-ion is various advantages and is required by batteries such as high power, so lithium-ion plays a crucial role in lithium-ion batteries. The electrolyte is one of the core materials of lithium secondary battery and primary battery capacity, improves the mobility between the mobile anode and cathode, and plays the role of medium material. The lithium-ion battery's electrolyte, a crucial component, transports ion conduction current between the positive and negative electrodes. Choosing the right electrolyte is also essential for achieving high energy and power densities, long cycle lives, and good safety performance of the lithium-ion secondary battery. First, understand the lithium-ion battery charge and discharge of the working principle of the chemical equation, and the lithium-ion battery is split into four key components, respectively: positive and negative electrode, diaphragm, and electrolyte, then the electrolyte analysis, the electrolyte is composed of organic solution, conductive salt, and additives. Finally, a new type of sulfate additive, ethyl sulfate, is found and studied at the electrolyte level by literature search. By using the constant current charge-discharge test, cyclic voltammetry, scanning electron microscopy, energy scattering spectroscopy, and electrochemical impedance spectroscopy, researchers are examining the effects of additive ethyl sulfate (DTD) on the performance of lithium-ion batteries and the interfacial performance of graphitized carbon microspheres (MCMB) electrode/electrolyte (EIS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call