Abstract

Lead halide perovskites are the most promising compared to the other recently discovered photovoltaic materials, but despite their enormous potential, these materials are facing some serious concerns regarding lead-based toxicity. Among many lead-free perovskites, the vacancy-ordered double perovskite cesium titanium halide family (Cs2TiX6, X = Cl, Br, I) is very popular and heavily investigated and reported on. The main objective of this study is to design and compare an efficient cesium titanium halide-based solar cell that can be used as an alternative to lead-based perovskite solar cells. For efficient photovoltaic requirements, the hole-transport layer and electron-transport layer materials such as PEDOT:PSS and Nb2O5 are selected, as these are the commonly reported materials and electronically compatible with the cesium titanium halide family. For the active layer, cesium titanium halide family members such as Cs2TiCl6, Cs2TiBr6, and Cs2TiI6 are reported here for the devices ITO/Nb2O5/Cs2TiI6/PEDOT:PSS/Au, ITO/Nb2O5/Cs2TiBr6/PEDOT:PSS/Au, and ITO/Nb2O5/Cs2TiCl6/PEDOT:PSS/Au, respectively. To determine the most efficient photovoltaic response, all the layers (PEDOT:PSS, Nb2O5, and active perovskite layer) of each device are optimized concerning thickness as well as doping density, and then each optimized device was systematically investigated for its photovoltaic responses through simulation and modeling. It is observed that the device ITO/Nb2O5/Cs2TiI6/PEDOT:PS/Au shows the most efficient photovoltaic response with little above 18.5% for maximum power-conversion efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.