Abstract

This article studies the construction of self-stabilizing topologies for distributed systems. While recent research has focused on chain topologies where nodes need to be linearized with respect to their identifiers, we explore a natural and relevant 2-dimensional generalization. In particular, we present a local self-stabilizing algorithm DStab which is based on the concept of “local Delaunay graphs” and which forwards temporary edges in greedy fashion reminiscent of compass routing. DStab constructs a Delaunay graph from any initial connected topology and in a distributed manner in time O(n3) in the worst-case; if the initial network contains the Delaunay graph, the convergence time is only O(n) rounds. DStab also ensures that individual node joins and leaves affect a small part of the network only. Such self-stabilizing Delaunay networks have interesting applications and our construction gives insights into the necessary geometric reasoning that is required for higher-dimensional linearization problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.