Abstract

A new steganalysis system for JPG-based image data hiding is proposed in this paper. We use features extracted from both wavelet and DCT domains that are refined later in the sense of utmost discrimination between the clear and stego images in the classification system. Statistical properties of the SVD of wavelet sub-bands are combined with the extended DCT-Markov features, and the features that are most sensitive to the data embedding are chosen through a SVM-RFE based selection algorithm. Experimental results show significant improvement over baseline methods, especially for steganalysis of Perturbed Quantization (PQ), which is known to be one of most secure JPG-based steganography schemes, with 90.5% average detection accuracy at low embedding rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.