Abstract

One-dimensional nanowire structures composed of perovskite are widely recognized for their exceptional optoelectronic performance and mechanical properties, making them a popular area of investigation in photodetection research. In this work, a perovskite nanowire/copper phthalocyanine heterojunction-based photodetector was fabricated, which exhibits high photoresponse in the visible-near-infrared region. The incorporation of a heterojunction significantly enhanced the photoelectric performance. Specifically, the photoresponsivity and external quantum efficiency of the nanowire-based device were elevated from 58.5 A W−1 and 1.35 × 104% to 84.5 A W−1 and 1.97 × 104% at 532 nm, respectively. The enhanced photoresponse of the heterojunction device can be attributed to the unique microstructure of nanowire arrays. The wrapping of the nanowires by copper phthalocyanine forms heterojunctions with a larger dissociation area, which facilitated exciton dissociation and enhanced device performance. This work provides a promising example for optimizing the performance of nanowire devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.