Abstract

Bulk graphene nano-flakes (GNFs)-reinforced Ti matrix composite (GNFs/Ti) was obtained by laminated microstructure design. By means of a novel flake powder assembly approach, the GNFs possessed high compatibility with Ti flakes and achieved uniform dispersion in matrix. Powder mixtures were consolidated through low-temperature sintering and short-time heat treatment strategy to simultaneously manipulate the interface reaction and microstructure. Compared with the unreinforced Ti matrix, GNFs/Ti composites were shown to obtain significantly improved strength. Specially, the 0.46 vol% GNFs/Ti composite heat-treated at 1023 K for 450s exhibited the exceptional well ductility with a superior high compressive yield strength of ~2 GPa, which was interpreted by the strong GNFs-Ti interface, and the extrinsic toughening effect as a result of the laminated microstructure and improvement of matrix grain bonding. This work provided a feasible way to construct the high performance nano-carbon reinforced Ti-based composites, and underscore the importance of interface reaction and microstructure design for achieving the well strength-ductility combination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.