Abstract

The evolution of modern heterogeneous accelerators, such as GPUs, has significantly advanced the landscape of artificial intelligence (AI). There is a notable surge to adopt AI within the nuclear physics domain (AI4NP). While most AI4NP studies focus on feasibility analysis, our attention is directed towards evaluating their performance on contemporary GPUs that integrate tensor cores. We first benchmark the throughput of hyperparameterized multi-layer perceptron (MLP) models. We then examine the performance of an AI4NP application: Hydra. We assess the performance gain and accuracy loss caused by the tensor cores for low-precision floating-point operations. Our experiments encompass the PyTorch and TensorFlow Keras frameworks on NVIDIA’s T4 and A100 GPUs. We explore the behavior of different GPU hardware platforms and AI software tools. This study can be a valuable resource for guiding the performance optimization of larger-scale deployments of AI4NP applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.