Abstract
High magnetic fields play a crucial role in advancing basic sciences, fusion energy, and magnetic resonance imaging systems. However, the widespread use of high-field magnets requires affordable high-temperature superconducting wires that can carry large supercurrents. Iron-based superconductors offer an economically attractive solution to push forward important yet costly scientific programs, such as nuclear fusion reactors and next-generation particle accelerators. In this review, we start with the fabrication of iron-based superconducting wires and tapes and continue to discuss several key factors governing the current transport properties. State-of-the-art wires and tapes are introduced with emphasis on grain boundary characteristics, flux pinning, and anisotropy. The architecture of flexible conductors enables low cost, high mechanical strength, and high thermal stability. Recent progress in practical applications, including superconducting joints and insert coils, is also reviewed. Finally, we propose several key questions faced by iron-based superconductors in future practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.