Abstract

The possibility to access undifferenced and uncombined Global Navigation Satellite System (GNSS) measurements on smart devices with an Android operating system allows us to manage pseudorange and carrier-phase measurements to increase the accuracy of real-time positioning. The goal is to perform real-time kinematic network positioning with smartphones, evaluating the positioning accuracy regarding an external mass-market device. The positioning of Samsung Galaxy S8+ and Huawei P10 plus smartphones was performed using a dedicated tool developed by the authors, considering a continuous operating reference station (CORS) network with a mean inter-station distance of about 50 km. The same positioning technique was also applied to an external GNSS low-cost single-frequency receiver (u-blox EVK-M8T) to compare performance between the receiver and antenna embedded in the previous smartphones and this low-cost receiver coupled with a mass-market antenna (Garmin GA38). Attention was also focused on the phase ambiguity resolution, that it is still a challenging aspect for mass-market devices: even if the two smartphones provide slightly different results, the accuracy obtainable today is greater than 60 cm with a precision of few centimetres in real-time, if a CORS network is available. For real-time applications using portable devices, decimetre-level accuracy is sufficient for many applications, such as rapid mapping and search and rescue activities: these results will open new frontiers in terms of real-time positioning with portable low-cost devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call