Abstract

Community structure as an interesting property of network has attracted wide attention from many research fields. In this paper, we exploit the visual community structure in visual-temporal correlation network and utilize it to improve interactive video retrieval. Firstly, we propose a hierarchical community-based feedback algorithm. By re-ranking the video shots through diffusion processes respectively on the inter-community and intra-community level, the feedback algorithm can make full use of the limited user feedback. Furthermore, since it avoids entire graph computation, the feedback algorithm can make quick responses to user feedback, which is particularly important for the large video collections. Secondly, we propose a community-based visualization interface called VideoMap. By organizing the video shots following the community structure, the VideoMap presents a comprehensive and informative view of the whole dataset to facilitate users' access. Moreover, the VideoMap can help users to quickly locate the potential relevant regions and make active annotation according to the distribution of labeled samples on the VideoMap. Experiments on TRECVID 2009 search dataset demonstrate the efficiency of the feedback algorithm and the effectiveness of the visualization interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.