Abstract

Creating healthy environments around schools is important to promote healthy childhood development and is a critical component of public health. In this paper we present a tool to characterize exposure to multiple urban environment features within 400m (5-10min walking distance) of schools in Greater London. We modelled joint exposure to air pollution (NO2 and PM2.5), access to public greenspace, food environment, and road safety for 2,929 schools, employing a Bayesian non-parametric approach based on the Dirichlet Process Mixture modelling. We identified 12 latent clusters of schools with similar exposure profiles and observed some spatial clustering patterns. Socioeconomic and ethnicity disparities were manifested with respect to exposure profiles. Specifically, three clusters (containing 645 schools) showed the highest joint exposure to air pollution, poor food environment, and unsafe roads and were characterized with high deprivation. The neighbourhood of the most deprived cluster of schools had a median of 2.5ha greenspace, 29.0µg/m3 of NO2, 19.3µg/m3 of PM2.5, 20 fast food retailers, and five child pedestrian crashes over a three-year period. The neighbourhood of the least deprived cluster of schools had a median of 21.8ha greenspace, 15.6µg/m3 of NO2, 15.1µg/m3 of PM2.5, 2 fast food retailers, and one child pedestrian crash over a three-year period. To have a school-level understanding of exposure levels, we then benchmarked schools based on the probability of exceeding the median exposure to various features of interest. Our study accounts for multiple exposures, enabling us to highlight spatial distribution of exposure profile clusters, and to identify predominant exposure to urban environment features for each cluster of schools. Our findings can help relevant stakeholders, such as schools and public health authorities, to compare schools based on their exposure levels, prioritize interventions, and design local policies that target the schools most in need.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.