Abstract
Food insecurity is a global challenge affecting millions of people especially those from least developed regions. Famine predictions are being carried out to estimate when shortage of food is most likely to happen. The traditional data sets such as house hold information, price trends, crop production trends and biophysical data used for predicting food insecurity are both labor intensive and expensive to acquire. Current trends are towards harnessing big data to study various phenomena such sentiment analysis and stock markets. Big data is said to be easier to obtain than traditional datasets. This study shows that phone messages archives and telephone conversations as big datasets are potential for predicting food crisis. This is timely with the current situation of massive penetration of mobile technology and the necessary data can be gathered to foster studies such as this. Computation techniques such as Naïve Bayes, Artificial Networks and Support Vector Machines are prospective candidates in this strategy. If the strategy is to work in a nation like Uganda, areas of concern have been highlighted. Future work points at exploring this approach experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.