Abstract

This paper examines the role of grasper compliance and kinematic configuration in environments where object size and location may not be well known. A grasper consisting of a pair of two-link planar fingers with compliant revolute joints was simulated as it passively deflected during contact with a target object. The kinematic configuration and joint stiffness values of the grasper were varied in order to maximize successful grasp range and minimize contact forces for a wide range of target object size. Joint rest angles around 25–45 degrees produced near-optimal results if the stiffness of the base joint was much smaller than the intermediate joint, as confirmed experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.