Abstract

This study explores various approaches to formulating a parallel hybrid model (HM) for Water and Resource Recovery Facilities (WRRFs) merging a mechanistic and a data-driven model. In the study, the HM is constructed by training a neural network (NN) on the residual of the mechanistic model for effluent nitrate. In an initial experiment using the Benchmark Simulation Model no. 1, a parallel HM effectively addressed limitations in the mechanistic model's representation of autotrophic bacteria growth and the data-driven model's incapability to extrapolate. Next, different versions of a parallel HM of a large pilot-scale WRRF are constructed, using different calibration/training datasets and different versions of the mechanistic model to investigate the balance between the calibration effort for the mechanistic model and the compensation by the NN component. The HM can improve predictions compared to the mechanistic model. Training the NN on an independent validation dataset produced better results than on the calibration dataset. Interestingly, the best performance is achieved for the HM based on a mechanistic model using default (uncalibrated) parameters. Both long short-term memory (LSTM) and convolutional neural network (CNN) are tested as data-driven components, with a CNN HM (root-mean-squared error (RMSE) = 1.58 mg NO3-N/L) outperforming an LSTM HM (RMSE = 4.17 mg NO3-N/L).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.