Abstract

The inherent strain method is commonly employed to predict part distortion in the additive manufacturing (AM) process simulations. However, mean inherent strain values are considered which could hinder the prediction accuracy. Therefore in this paper, variation in inherent strain values are considered to predict the geometric distortion. In the first step, a five layer mesoscale thermo-mechanical model is employed to estimate the varying inherent strain values in each of the five layers. This serves as an input to the inherent strain method to predict geometric distortion at the part level. A comparison between mean versus varying inherent strain approach is shown to highlight the differences in geometric distortion prediction accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.