Abstract
Despite the convenience brought by cloud computing, internet users, meanwhile, are faced with risks of data theft, tampering, forgery, etc. Fully homomorphic encryption (FHE) has the ability to deal with the ciphertext directly, which can solve the problem of data security in cloud computing. Therefore, fully homomorphic encryption (FHE) has been widely used in cloud computing as well as multiparty computing, functional encryption and private information retrieval, etc. However, previous FHE schemes are based on standard (ring) learning with errors (LWE) assumption and the most typical schemes were created by Brakerski (CRYPTO2012) and Gentry-Sahai-Waters (GSW) (CRYPTO2013). Moreover, inspired by the work of Li et al. at ICPADS2016, they made use of Brakerski’s scale-invariant technology and constructed a new FHE scheme with errorless key switching under Dual-First-is-errorless LWE (Dual-Ferr.LWE) problem. Hence, armed with Li et al.’s work, in this paper, we use Gentry-Peikert-Vaikuntanathan’s scheme (i.e., under dual LWE assumption) as building block to construct a FHE scheme. Lastly, under the assumption of decisional learning with errors (LWE), we prove that our scheme is CPA (chosen-plaintext-attack) secure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.