Abstract

To fully understand the properties of functional nanostructures such as catalytic nanoclusters, it is necessary to know the positions of all the atoms in the nanostructure. The catalytic properties of metal nanoclusters can often be improved by the addition of a second metal, but little is known about the role of the different metals in these bimetallic catalysts, or about their interactions with each other and the support material. Here we show that aberration-corrected scanning transmission electron microscopy of supported rhodium-iridium clusters, combined with dynamic multislice image simulations, can identify individual atoms, map the full structure, and determine changes in the positions of metal atoms in sequential images. This approach could help in the development of new and improved catalysts and other functional nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.